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Abstract Consider a convex polygon Vn with n sides, perimeter Pn, diameter Dn,
area An, sum of distances between vertices Sn and width Wn. Minimizing or maximiz-
ing any of these quantities while fixing another defines 10 pairs of extremal polygon
problems (one of which usually has a trivial solution or no solution at all). We survey
research on these problems, which uses geometrical reasoning increasingly comple-
mented by global optimization methods. Numerous open problems are mentioned, as
well as series of test problems for global optimization and non-linear programming
codes.

Keywords Polygon · Perimeter · Diameter · Area · Sum of distances · Width ·
Isoperimeter problem · Isodiametric problem

1 Introduction

Plane geometry is replete with extremal problems, many of which are described in
the book of Croft et al. [12] on Unsolved problems in geometry. Traditionally, such
problems have been solved, some since the Greeks, by geometrical reasoning. In the
last four decades, this approach has been increasingly complemented by global opti-
mization methods. This allowed solution of larger instances than could be solved by
any one of these two approaches alone.
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Probably the best known type of such problems are circle packing ones: given a
geometrical form such as a unit square, a unit-side triangle or a unit-diameter cir-
cle, find the maximum radius, and configuration of n circles which can be packed in
its interior (see [47] for a recent survey and the site [45] for a census of exact and
approximate results with up to 300 circles).

Extremal problems on convex polygons have also attracted attention of both geom-
eters and optimizers (e.g., see [19]). In the present paper, we survey research on that
topic.

A polygon Vn is a closed plane figure with n sides. A vertex of Vn is a point at which
two sides meet. If any line segment joining two points of Vn is entirely within Vn then
Vn is convex. If all sides of Vn have equal length, Vn is equilateral. If an equilateral
polygon has equal inner angles between adjacent sides it is regular. The perimeter Pn
of Vn is the sum of the length of its sides. The diameter of Vn is the maximum distance
between two points of Vn, or, which is equivalent, the length of its longest diagonal, a
straight line joining two vertices. The width of Vn in direction θ is the distance between
two parallel lines perpendicular to θ and supporting Vn from below and above. The
width of a polygon Vn is the minimum width for all directions θ .

Two convex polygons Vn and V′
n are isoperimetric if they have the same perimeter.

They are isodiametric if they have the same diameter. Isoperimetric problems for
convex polygons consist in finding the extremal polygons for some quantity such as
area, diameter, sum of distances or width while keeping the perimeter fixed (say at
1). Isodiametric problems are defined similarly.

Consider a convex polygon Vn with n sides. Let An denote its area, Pn its perimeter,
Dn its diameter, Sn the sum of distances between all pairs of its vertices and Wn its
width. Maximizing and minimizing any of these quantities while fixing another one
defines 10 pairs of extremal problems. Usually, one problem from each pair has a
trivial solution or no solution at all. To illustrate, maximizing An while fixing Pn is the
classical isoperimetric problem for polygons whose solution is the regular polygon,
whereas minimizing An while fixing Pn has as solution a polygon as close as desired
from a straight line of length Pn/2 and its area tends to 0 in the limit. Additional
constraints may be imposed, the most studied of which being that the polygons are
equilateral.

At first thought, one might believe that the regular polygons are the solution of the
extremal problems defined above. Indeed, this is often true, but usually only for some
large subset of the values of n.

Table 1 specifies for which values of n these extremal problem have been solved.
Values above the main diagonal correspond to general convex polygons and values
below to equilateral polygons.

A simple formulation for these problems is obtained by denoting the consecutive
vertices of the n−gon Vn by vi = (xi, yi):

An =
∣
∣
∣

1
2

∑n
i=1(yi+1 − yi)(xi+1 + xi)

∣
∣
∣, Pn = ∑n

i=1 ‖vi+1 − vi‖, Dn = maxi<j ‖vi − vj‖,

Sn = ∑

i<j ‖vi − vj‖, Wn = mini maxj �=i,i+1

∣
∣(yj+1−yj)xi+(xj−xj+1)yi+xj+1yj−xjyj+1

∣
∣

‖vj+1−vj‖ , i + 1 and

j + 1 are done modulo n. Other formulations are used in the literature.
The first line of Table 1 corresponds to isoperimetric problems. They will be studied

in Sect. 2. The second line corresponds to isodiametric problems. They will be exam-
ined in Sect. 3. Results below the main diagonal will be considered in those sections
too. In Sect. 4, further open problems will be mentioned. We hope by this survey to



J Glob Optim (2007) 38:163–179 165

Table 1 Values of n for which extremal polygons have been determined

Pn Dn An Sn Wn

Pn = 1 – Min n with odd
factor and n = 4, 8

Max all n Open Open

Dn = 1 Max n with odd
factor and n = 4, 8

– Max odd n Max n = 3, 4, 5 Max n with odd
factor and n = 4

An = 1 Min all n Min odd n – Open Open
Sn = 1 Open Min n = 3, 5 Open – Open
Wn = 1 Open Min n with odd

factor and n = 4
Open Open –

make geometers more aware of the help that global optimization can bring them, to
stimulate work of optimizers in applying global optimization to plane geometry as
well as to provide sets of test problems for both exact and heuristic algorithms from
that field (including methods of non-linear programming).

2 Isoperimetric problems

2.1 Maximizing the area

The oldest isoperimetric problem for convex polygons dates from the Greeks and can
be expressed as follow: Find for all n which convex polygon Vn with unit perimeter
has maximum area. As explained in a beautiful paper of Blåsjö [9], this problem was
solved (assuming implicitly the existence of a solution) by Zenodorus (circa 200–140
b.c.) in his lost treatise “On isometric figures”. Happily, his work was reported by
Pappus [49] and Theon of Alexandria [22]. The solution is the set of regular polygons.
The argument comprises two steps: (1) show that among all isoperimetric triangles
with the same base the isosceles triangles has maximum area. It follows, by iteration,
that the optimal polygon must be equilateral; (2) show that if the polygon is not
equiangular, its area may be increased by redistributing perimeter from a pointy to a
blunt angle until the two angles are the same. Increasing the number of sides gives in
the limit the famous result that among all plane figures with fixed perimeter the circle
encloses the largest area.

2.2 Minimizing the diameter

A second isoperimeteric problem has apparently not been considered until a paper
of Reinhardt [38] published in 1922, but has been much studied since, both for gen-
eral and for equilateral polygons. It can be expressed as follows: Find for all n which
polygon with unit perimeter has the smallest diameter.

As mentionned in the introduction this problem is equivalent to finding the poly-
gons with unit diameter (which, following Graham [21] we call small polygons) and
longest perimeter. As it is usually considered in this second form in the literature, we
will study it in the next section, devoted to isodiametric problems.
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2.3 Minimizing and maximizing the sum of distances between vertices

These problems appear to be unsolved. They can be stated as follows: find for all n
which polygons with unit perimeter has the smallest, or largest, sum of distances between
all pairs of vertices.

Numerical experiments suggest in both cases that extremal polygons appear to be
arbitrarily close to the straight line of length 1

2 , all vertices being partitioned at the
endpoints of the line segment. We therefore make the following conjecture.

CONJECTURE 2.1 The sum Sn of distances between vertices v1, v2, . . . , vn of a convex
polygon with unit perimeter satisfies

n − 1
2

< Sn <
1
2

⌊n
2

⌋ ⌈n
2

⌉

the bounds being approached arbitrarily closely by the line segment [0, 1
2 ] with v1 at

0, and v2, . . . , vn arbitrarily close to 1
2 in the former case, and with v1, v2, . . . , v� n

2 �
arbitrarily close to 0 and v� n

2 �+1, . . . , vn arbitrarily close to 1
2 in the latter case.

2.4 Maximizing the width

This problem also appears to be unexplored. It is expressed as: find for all n which
polygon with unit perimeter has the largest width.

The optimal figure for n = 4 is not the square since its width 1
4 is inferior to the

width of the equilateral triangle
√

3
6 . The best solution that we have so far has a width

of 1
4

√

(6
√

3 − 9).

3 Isodiametric problems

3.1 Maximizing the area

3.1.1 Exact solution

As for the small polygon with longest perimeter, main results on the small polygons
with maximum area were given by Reinhardt [38]. He proves that for all odd n ≥ 3,
the regular polygon has maximum area among all polygons with unit diameter. He
also observes that the square has maximum area among small quadrilaterals, but the
solution is not unique. Indeed, any small quadrilateral whose diagonals are of unit
length and perpendicular has an area equal to 1

2 .
As recently noted by Mossinghoff [31, 32], Reinhardt also states, at the end of

his paper, the often rediscovered result that the regular small polygon never has
maximum surface for even n ≥ 6 (see [26, 40, 48]).

Graham [21] determined the small hexagon with largest area in 1975. In order to
do so, he considered all diameter configurations. They can be represented by diameter
graphs with rigid edges of length 1. As shown by Erdős [16] and Woodall [54] such
graphs have the following properties:

(a) Any two edges have a point in common, which is either an endpoint or an interior
point for both of them;
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Fig. 1 The ten possible diameter configurations for the hexagon

(b) If the diameter graph is a tree, i.e., it is connected and has no cycle, it is a cater-
pillar, i.e., a path to which are incident pending edges (i.e., edges with the other
vertex of degree 1) only;

(c) If the diameter graph is connected but not a tree, it has a single cycle, of odd
length to which are incident all other edges, which are pending ones.

Enumeration shows that there are 10 different connected diameter graphs for
the hexagon. They are reproduced on Fig. 1. Using geometric arguments, Graham
eliminates all but the last one. For instance, the area of an hexagon with diameter
configuration 1 cannot exceed the area of a sector with radius 1 and angle π

3 , which
is π

6 ≈ 0.523599 . . . This maximum area is less than the area of the regular small

hexagon, i.e., 3
√

3
8 ≈ 0.649519 . . .

Graham then proves (without giving details; a full proof can be found in [55]) that
the optimal hexagon has an axial symmetry. Then the following expression for the
area, in a single variable, can be derived:

A6 =
(

1
2

− x
) (

1 − x2
)1/2 + x

⎛

⎝1 +
(

1 −
(

x + 1
2

)2
)1/2

⎞

⎠ .
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Fig. 2 Small hexagons with
maximal area

Fig. 3 Definition of variables of case 31, optimal according to the conjecture of Graham

This expression has a unique maximum for x ∈ [0, 1
2 ], which can be obtained by setting

the first derivative at 0 and solving numerically. The largest small hexagon is repre-
sented in Fig. 2, together with the regular small hexagon. Its area is A∗

6 ≈ 0.674981 . . .

that is about 3.92% larger than that of the regular small hexagon. Note that Graham’s
hexagon had previously been found by Bieri [8] under an unproved assumption of
symmetry.

The approach of Graham has been followed by the present authors, together with
Xiong [6], to determine the largest small octagon. There are more cases to con-
sider than for the hexagon, i.e., 31 diameter configurations. The optimal diameter
configuration, already conjectured by Graham [21], and the problem of finding the
corresponding octagon with largest area expressed as a nonconvex quadratic program
with nonconvex constraints are illustrated in Fig. 3.

The objective function of the quadratic program, represents the area of the octagon.
The constraints express that the (squared) distances between vertices do not exceed
1, and that distances corresponding to diameters are equal to 1. The formulation
requires 10 variables, 10 linear inequalities, 17 quadratic inequalities, and 6 quadratic
equalities. There were two erroneous signs in the problem formulation in [1, 6]. A
corrected version may be found in [4].

To determine the optimal solution, the algorithm of Audet et al. [2] was used. It is a
branch-and-cut method based on the Reformulation-Linearization-Technique (RLT,
see [41–43]). Squares and products of pairs of variables are replaced by new variables
and linear constraints added to ensure having a best possible approximation. Branch-
ing is done in such a way that the local error for a term is as small as possible. Moreover,
cuts due to branching may be used at different nodes of the branch-and-bound tree.
Finally, resolution begins by the determination of intervals of feasible values for each
variable, which notably strengthens bounds and leads to more efficient branching.
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Computing time for the case 31 was over 100 h on a SUN-SPARC 20 station [1]. The
largest small octagon is represented in Fig. 3. Its area is A∗

8 = 0.726867 . . . and is about

2.79% larger than
√

2
2 = 0.707107 . . ., the area of the small regular octagon. To com-

plete the proof it was required to eliminate the 30 remaining diameter configurations.
This was done by combining geometric reasoning (which suffices in 23 cases) with
numerical methods (in the remaining seven cases).

3.1.2 Bounds for polygons with many sides

Instead of determining exact values of the area or perimeter for the remaining even
cases, Mossinghoff [31, 32] follows a different strategy: he constructs approximate
solutions with a guarantee on the value, i.e., an upper bound on the error expressed as
a function of the order O(ns) of the sth power of the number of vertices. He first notes
that it is well-known from the solution of the isoperimeteric problem for polygons
that

An ≤ P2
n

4n
cot

(π

n

)

.

Combining this result with Reinhardt’s bound [38] for the perimeter, i.e., Pn ≤
2n sin( π

2n ), gives for small polygons

An ≤ 1
2

cos
(π

n

)

tan
( π

2n

)

= Mn

an upper bound on the area. Then, Mossinghoff considers the diameter configura-
tion conjectured to be optimal by Graham [21]. With some simplifiying assumptions
related to equality of smallest angles of the star polygon, he then computes exact
values for the 2 or 3 remaining ones. This leads to a family of small polygons A′

n such
that, when n is an even integer:

A′
n − Ar

n = π3

16n2 + O
(

1
n3

)

and Mn − A′
n <

2π3

17n3 + O
(

1
n4

)

,

where Ar
n denotes the regular small polygon with n sides. Hence the error decreases

with the inverse of the third power of n.

3.1.3 Approximate solutions

In addition to exact results and bounds, approximate results (or unproved optimal
ones) have been obtained both by metaheuristics and by nonlinear programming.
Schilbach [44] presents a simple Monte–Carlo method to find a polygon with approx-
imately maximum area. His applet works n = 6 to about n = 20. Rechenberg [37]
applies an evolutionary strategy to determine this maximum area polygon with n =
6, 8, and 10. For n = 6, he obtains an hexagon with an area 3.94% above that of the
regular one and for n = 8 an octagon with an area 2.79% above that of the regular
octagon. These values are close to the optimal ones (in fact, slightly above them due
probably to tolerances in constraint satisfaction).

The maximum area problem has also been extensively used in the comparison of
non-linear programming codes. The formulation adapted relies on polar coordinates.
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Taking (ri, θi) for i = 1, . . . , n − 1 and rn = 0, θn = π as the coordinates of the vertices
of Vn, this problem can be expressed as

max
r,θ

area(r, θ) = 1
2

n−1
∑

i=1

ri+1ri sin(θi+1 − θi)

s.t. r2
i + r2

j − 2rirj cos(θi − θj) ≤ 1, 1 ≤ i < j ≤ n − 1,
θi ≤ θi+1, 1 ≤ i ≤ n − 2,
0 ≤ θi ≤ π , 1 ≤ i ≤ n − 1,
0 ≤ ri ≤ 1, 1 ≤ i ≤ n − 1.

(1)

The problem has 2n−2 variables,
(n

2 + 1
)

(n−1)+1 general constraints of which n−2
are linear, 2n−2 bound constraints and a large number of local optima. The objective
function is equal to the area, decomposed into triangles with a common vertex. The
first (n−2)(n−1)

2 constraints express that the distance between any 2 of the first n − 1
vertices does not exceed 1. The next constraints impose, without loss of generality,
an order and a maximum value on the angle coordinates. The last constraints express
that the distances between vn and another vertex vi cannot exceed 1. Values of n con-
sidered are 6, 10, 20, 25, 50, 75, 100, and 200. Results are given in a series of reports by
Moré et al. [10, 14, 15]. They are brought together in Table 2 (when several different
values are reported, the last best one is kept, stars indicate no convergence in the
allowed time). Initial solutions were “a polygon will almost equal sides” [10]. Codes
considered are donlp2 [46], lancelot [11], minos [33], snopt [20], loqo [50], filter
[18], and knitro [52]. In Table 2, the marks –, ? and � indicate, respectively, that this
test is not performed, that the CPU-time is not given and that the algorithm used for
this test does not converge.

In addition, we recall in the bottom lines of the table the area Ar
n of the regular

polygon with n sides, Ar
n−1 of the regular polygon with n − 1 sides (which is larger

Table 2 Performance on largest small polygon problem (from Moré et al. [10, 14, 15]

Nb Var. Solver n = 6 n = 10 n = 20 n = 25 n = 50 n = 75 n = 100 n = 200

donlp2 0.674979 0.749136 0.776853 – � – � –
cpu time ? ? ? – � – � –
lancelot 0.674982 0.749137 0.776859 0.779715 0.783677 0.784747 0.785031 –
cpu time ? ? ? 12.83 s 398.12 s 1148.2 s ? –
minos 0.674981 0.749137 0.768788 0.764383 0.766297 0.760729 0.762473 0.657163
cpu time ? ? ? 2.11 s 5.6 s 98.54 ? 223.94 s
snopt 0.674981 0.749137 0.776859 0.77974 0.784015 0.784769 0.785056 �

cpu time ? ? ? 1.14 s 4.34 s 91.07 s (256.6 s)? �

loqo 0.674981 � 0.719741 0.76714 0.77520 0.777554 � �

cpu time ? � ? 3.49 s 3.16 s 268.9 s � �

filter – – – – 0.766131 – 0.777239 �

cpu time – – – – 27.64 s – 555.2 s �

knitro – – – – 0.760725 – 0.737119 0.674980
cpu time – – – – 1.41 s – 8.99 s 59.53 s

Ar
n 0.649519 0.734732 0.772542 0.780232 0.783333 0.784824 0.784881 0.785269

Ar
n−1 0.657164 0.745619 0.776456 0.784053 0.785069 0.785316

Acor
n−1 0.672288 0.748257 0.776738 0.784070 0.785071 0.785317
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than Ar
n for k ≥ 6) as well as Acor

n−1 of the regular polygon with n − 1 sides corrected
by adding a vertex at distance 1 along the mediatrix of an angle.

Results for small n appear to be good: for n = 6, the five codes give the optimal
value of 0.67498; four of them obtain the same presumably optimal value of 0.74914
for n = 10 (the fifth code did not converge), two of them get the same value of 0.77686
for n = 20 (the fourth gets a slightly lower value and the fifth a much lower one).

For larger values of n, results are not so good, and sometimes quite bad. None of
the codes obtains the optimal solution for n = 25 or n = 75 nor a solution of value
better than Acor

n−1 for n = 50, 100 or 200. Both lancelot and snopt provide values
close to the best ones for n ≤ 100, snopt being the fastest to do so. The other codes get
worse values, sometimes by a very wide margin. For n = 200 the solutions reported
for the two codes successful in generating a solution are 16% and 14% below the area
of the regular polygon Ar

200. It appears in that case, and probably in others, that these
codes return a worse solution than the initial one.

So, these tests problems are good ones in the sense that they are challenging and
discriminating. Further comparisons could be made when beginning with a solution
farther away from the optimal one, or considering a particular case defined by a diam-
eter configuration of, as done in Mossinghoff [31, 32]. The other problems considered
in this survey could also lead to sets of test problems, both for nonlinear programming
codes and for metaheuristics using them as descent or ascent routines.

3.2 Maximizing the perimeter

This problem, already mentioned in its equivalent form in the previous section, may
be expressed as follows: Find for all n which unit diameter polygon has the largest
perimeter.

3.2.1 Reuleaux polygons

The problems of maximum perimeter will bring us to consider a class of geometric
figures already studied by Reuleaux [39] about a century ago. Reuleaux polygons are
not, strictly speaking, polygons, but have a polygonal basis, i.e., an odd polygon, regu-
lar or not, with the property that each vertex is at distance 1 from the two vertices of
the opposite side. The Reuleaux polygon is obtained by replacing each side by an arc
circle with radius 1, centered at a vertex and joining the two vertices of the opposite
side. Three examples of Reuleaux polygons, regular or not, are represented in Fig. 4.

Fig. 4 Examples of reuleaux polygons
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A remarkable property of Reuleaux polygons is that their width is constant, i.e.,
the same in all directions. It is also worth noting that the three unit-diameter Reuleaux
polygons of Fig. 4 have a perimeter equal to π . This is a consequence of Barbier’s the-
orem: “All curves of constant width w have the same perimeter πw”. Moreover, this
value is equal to the sum of internal angles of the polygon, or star polygon, formed by
the diameters. Consequently, the problem of finding the convex set with unit diameter
and longest perimeter has as solution the circle, but also all unit-diameter Reuleaux
polygons.

3.2.2 A bound and some easy cases

Reinhardt [38] gave an upper bound of 2n sin π
2n on the perimeter of a small polygon

for all n �= 2s where s is a positive integer. Datta [13] showed that it also holds when n
is a power of 2. This bound is attained for regular polygons when n is odd. So regular
small polygons have maximum perimeter for odd n. Moreover, if n is even but not a
power of 2, i.e., n = m2s where s is an odd number, prime or not, an optimal polygon
can be built from a Reuleaux polygon as follows:

(a) Consider a regular small polygon with m sides;
(b) Transform this polygon into a Reuleaux polygon by replacing each edge by a

circle’s arc passing through its end vertices and centered at the opposite vertex;
(c) Add at regular intervals, 2s − 1 vertices within each edge;
(d) Take the convex hull of the vertex set, i.e., vertices of the Reuleaux polygon and

vertices added in c).

Then Reinhardt’s bound is attained. Indeed each angle of the star polygon inside
the regular small polygon is α = π

m and each of them is divided by 2s upon addition

of the new vertices. So 2 sin α/2s

2 = 2 sin π/m2s

2 = 2 sin π
2n . Examples of small polygons

with maximum perimeter and n = 6, 10 and 12 sides are given in Fig. 5. Observe that
if m is a composite number, there are several equivalent solutions to the problem of
the small polygon with maximum perimeter. Datta [13] shows that all of them can
be determined by solving a system of diophantine equations. An example with three
optimal solutions is the case n = 15 illustrated in Fig. 6.

3.2.3 Bounds for polygon with many sides

Tamvakis [48] considered a Reuleaux triangle with unit width, with one arc divided
into either � n

3 � or �n
3  equal subarcs, so that the total number of vertices (at endpoints

Fig. 5 Polygons with maximal perimeter with even n and n �= 2s
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Fig. 6 Three pentadecagon of maximal perimeter Pn = 30 sin( π
30 ) ≈ 3.135854 . . .

of arcs or subarcs) is equal to n. He asks if these polygons with perimeter PT
n are opti-

mal for n = 2s and s ≥ 3. The maximum perimeter octagon described in subsection
3.2.4 shows it is not the case. Indeed its perimeter is P∗

n ≈ 3.121147 . . . while that the
Tamvakis polygon is Pn = 12 sin( π

18 ) + 4 sin( π
12 ) ≈ 3.119154 . . ..

Moreover, using similar reasoning as in the maximum area case, Mossinghoff [31,
32] found a family of small polygons with perimeter PH

n such that

PH
n − PT

n = π3

4n4 + O
(

1
n5

)

and Rn − PH
n = π5

16n5
+ O

(
1
n6

)

,

where Rn denotes the value of the Reuleaux bound on the perimeter. So this time the
error decreases with the inverse of the fifth power of n.

3.2.4 Exact solutions for n = 4 and n = 8: general polygons

The general small quadrilateral with largest perimeter has been determined by Tam-
vakis [48]. Three of its vertices are those of a unit equilateral triangle, and the fourth
one is at unit distance from one of the three vertices and equidistant from the other
two. Its perimeter is equal to 2(1+

√

2 − √
3) = 2+4 sin π

12 ≈ 3.035276 which exceeds
the perimeter of the small square 2

√
2 � 2.828427 by about 7.3%. Datta [13] also gives

a proof of this result.
For n = 8, we have solved the problem of finding the small octagon both in the

general case [3] and for equilateral octagons (see next subsection). For the former, we
first proved that the optimal diameter configuration graph of the octagon is connected,
so it is one of the 31 configurations of diameters considered previously for the largest
small octagon. This time, it is the diameter configuration 29 which gives the optimal
solution. This solution was obtained by solving the case of configuration 10, which is
a relaxation of configuration 29, as shown on Fig. 7: the constraint ‖v0 − v4‖ ≤ 1 in
case 10 becomes ‖v0 − v4‖ = 1 in case 29.

The non-convex program corresponding to this case can be written:

max
α

4 sin(
α1
4 ) + 4 sin(

α2
4 ) + 4 sin(

α3
4 ) + ||v1 − v4|| + ||v0 − v3||

s.t. ||v0 − v4|| ≤ 1
0 ≤ αi ≤ π

3 , i = 1, 2, 3,
(2)
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Fig. 7 Configuration 10

where the coordinates of vertices to be fixed in order to deduce the optimal solu-
tion are v0 = (cos α1, sin α1), v1 = (0, 0), v2 = (1, 0), v3 = (1 − cos α2, sin α2) and
v4 = (1 − cos α2 + cos(α2 + α3), sin α2 − sin(α2 + α3)), see again Fig. 7.

Solving this problem with a branch-and-bound global optimization code using
interval arithmetic [30, 36], bounds computed by the admissible simplex method [25,
29] and constraint propagation technique [27, 28], implemented in the IBBA code, we
obtained the optimal solution in about 3 h of computing time on the 30 PC cluster of
Pau University. Its perimeter is P∗

8 = 3.121147 . . ., with an error not exceeding 10−6.
Analysis of this solution showed that the constraint ‖v0 − v4‖ ≤ 1 is satisfied as an
equality and thus this solution corresponds to configuration 29. Adding to problem
(2) the first-order conditions

∂
(‖v2 − v′

1‖ + ‖v′
1 − v0‖ + ‖v0 − v3‖

)

∂α1
= 0,

∂
(‖v2 − v′

3‖ + ‖v′
3 − v4‖ + ‖v4 − v1‖

)

∂α3
= 0,

where v′
1 = (

cos( α1
2 ), sin(

α1
2 )

)

and v′
3 = (

x3 + cos(α2 + α3
2 ), y3 − sin(α2 + α3

2 )
)

, as well
as the bound constraints 0.688 ≤ αi ≤ 0.881, ∀i ∈ {1, 2, 3}, the branch-and-bound algo-
rithm shows in only 0.12 s that case 10 can be eliminated. The remaining cases are
solved by dominance arguments or numerically (see [3] for details).

3.2.5 Exact solutions for n = 4 and 8: equilateral polygons

It is easy to see that the square, i.e., the regular quadrilateral, is the small equilat-
eral quadrilateral with largest perimeter. A similar property does not hold for n = 8.
Indeed, Vincze [51] studies the maximum perimeter of equilateral polygons in a paper
of 1950, and presents a small equilateral octagon, credited to his wife, which has a
larger perimeter that the regular one. This octagon is represented in Fig. 8. In [5] we
have shown, 54 years latter, that this octagon is suboptimal (see again Fig. 8).

This was done by assuming vertical symmetry and solving analytically with Maple
for the diameter configurations of Fig. 8. To solve the problem completely, we proved
among other results, that the four main diagonals of the optimal octagon must be
diameters (as for the regular octagon). Then the quadratic program with non-convex
quadratic constraints of Fig. 8 was solved. The objective function is just eight times
the (unknown) length a of a side; the constraints express that all sides have the same
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Fig. 8 Equilateral octagon of maximum perimeter

length a, that the main diagonals have length 1, that no pair of vertices are more than
one unit apart. Upper and lower bounds on a are also derived. The RLT techniques
[2] required only 45 s to find the optimal solution with an error not exceeding 10−7.

3.3 Maximizing the width

A third isodiametric problem has attracted some attention. It can be described as
follows: Find for all n which convex polygon with unit diameter has the largest width.

Bezdek and Fodor [7] studied this problem for general polygons. Results obtained
are similar to those of the maximum perimeter problem:

(a) The maximum width satisfies Wn ≤ cos π
2n for n ≥ 3 and equality holds if n has

an odd divisor greater than 1;
(b) if n has an odd prime divisor then a polygon Vn is extremal if and only if it is

equilateral and is inscribed in a Reuleaux polygon of constant width 1, so that
the vertices of the Reuleaux polygon are also vertices of Vn;

(c) results are also obtained for quadrilaterals: W∗
4 =

√
3

2 . Moreover, all extreme
quadrilateral have the property that 3 of their vertices from a regular triangle
and the fourth vertex is contained in the Reuleaux triangle determined by the
three vertices.

This last result implies that the maximum perimeter quadrilateral of Tamvakis [48]
also has maximum width. No complete results are available for larger powers of 2
than 4.

3.4 Maximizing the sum of distances

The fourth isodiametric problem that we consider was studied by a few authors. It can
be expressed as follows: find for all n which convex polygon with unit diameter has the
largest sum of distances between pairs of vertices.

This problem appears to have been first posed by Fejes Tóth [17]. It may be stated
mathematically as

max
v1,v2,...,vn

Sn =
n

∑

i,j=1

‖vi − vj‖,

s.t. ‖vi − vj‖ ≤ 1, i, j = 1, 2, . . . , n. (3)
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Wolf [53] obtained the following bound, valid also for arbitrary norms on R
2:

Supremum
n≥1,v1,v2,...,vn∈R2

1
n2 Sn ≤ 1

2
+ π

16
≈ 0.6963495. (4)

The problem was further studied by Pillichshammer [34, 35]. Instead of considering
diameter configurations he followed another tack: pack triangles, quadrilaterals and
pentagons in the complete graph. Then use upper bounds on the length of a triangle,
quadrilateral or pentagon and keep an upper bound of 1 for all edges not covered.
This leads to the following result [35]:

Sn ≤

⎧

⎪⎨

⎪⎩

n(n−1)
3 + π(n2+n−2)

9 for n = 1 mod 3,
n(n+1)

3 + π(n2−n−2)
9 for n = 2 mod 3,

n(n−3)
3 + π(n2+3n)

9 for n = 3 mod 3.

(5)

These bounds, divided by n2, are shaper than the bounds (4): they tend to 1
3 + π

9 ≈
0.682391 < 1

2 + π
16 . The bounds (5) are sharp for n = 3, 4, 5, which implies that the

triangle, the quadrilateral of Tamvakis [48] and the pentagon have minimum sum of
distances between vertices.

Other bounds obtained by Pillichshammer in a similar way [35] involve trigono-
metric functions.

4 Conclusion and open problems

Work on extremal problems for polygons is substantial and rapidly increasing. Many
problems remain open and even more unexplored. Indeed:

(1) Only one of the 10 problems for general polygons considered in Table 1 is solved
for all values of n (max An subject to Pn = 1); two more problems are solved for
all n having an odd factor and n = 4 or 8 (max Pn subject to Dn = 1) or n = 4
(max Wn subject to Dn = 1); one problem is solved for n odd and for n = 4, 6, 8
(max An subject to Dn = 1); one problem is solved for n = 3, 4, 5 only (max Sn
subject to Dn = 1) and the five remaining problems are almost completely open;

(2) solved cases for equilateral polygons are the same as for general polygons except
for a couple of cases (n = 4 for max Sn subject to Dn = 1 and max An subject to
Sn = 1). So again many problems are open;

(3) extremal problems on polygons could also be expressed in terms of many quan-
tities little or not studied up to now in that context. In particular the following
appear to be promising:
(a) The circumradius or radius of the smallest circle enclosing the polygon.

It is known that given the lengths a1, a2, . . . , an of the successive sides of
a polygon the maximum area is reached if all vertices are on a circle. It
follows from that result and the argument of Zenodorus that the maximum
area polygons with given circumradius are the regular ones. They also have
maximum perimeter.

(b) The inradius or radius of the largest circle enclosed the polygon.
(c) The fatness of the polygon or ratio of the circumradius and inradius.
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(d) The length of a median, i.e., the length of the line segment perpendicular to
a side through its middle point and within the polygon. One could consider
both the largest median length and the sum of median lengths.

(e) The mediatrix length, i.e., the length of the line segment passing through
a vertex, dividing into the corresponding angle and within the polygon.
Again, one could consider the largest mediatrix length and the sum of
mediatrix lengths.

(4) Little work appears to have been done for extremal star polygons SPn. They
are obtained from convex polygons by joining vertices i and (i + k) mod n along
the perimeter for i = 1, 2, . . . , n and some k = 2, 3, . . . , n−1

2 . The kernel of a star
polygon is another polygon equal to the intersection of the half planes limited
by the star polygon’s sides and including the center. It is also the set of points
from which any point u of SPn is visible, i.e., joined to u by a straight line entirely
contained in SPn. All problems studied above can be defined for the kernel (of
order k) of a polygon in a similar way as done above for the polygon itself.

(5) Extension of problems from polygons to polytopes has been slightly studied;
while formulating versions of the extremal problems discussed above for poly-
topes instead of for polygons is easy, their resolution appears to be difficult in
view of the fact that results have been obtained up to now for particular cases
or restricted families only, even in R

3. For instance, Klein and Wessler [23, 24]
determine the largest small three-dimensional polytope with six vertices and
work on extending this result to n + 3 vertices in n-dimensional space.
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